

2-Deoxy-L-ribose from an L-arabinono-1,5-lactone

Alistair J. Stewart,^a Richard M. Evans,^a

Alexander C. Weymouth-Wilson,^b Andrew R. Cowley,^c David J. Watkin^c and George W. J. Fleet^{a,*} ^aDyson Perrins Laboratory, Oxford University, South Parks Road, Oxford OX1 3QY, UK ^bCMS Chemicals, 9 Milton Park, Abingdon, Oxford OX14 4RR, UK ^cChemical Crystallography Laboratory, Oxford University, 9 Parks Road, Oxford OX1 3QU, UK

Enantioselective transesterification of a tertiary alcohol by lipase A from *Candida antarctica*

Tetrahedron: Asymmetry 13 (2002) 2693

Sajja Hari Krishna, Mattias Persson and Uwe T. Bornscheuer* Institute of Chemistry & Biochemistry, Department of Technical Chemistry & Biotechnology, Greifswald University, Soldmannstraße 16, D-17487 Greifswald, Germany

For the first time, the tertiary alcohol 2-phenylbut-3-yn-2-ol could be resolved by transesterification using lipase A from *Candida antarctica* (CAL-A). Under optimized conditions, 94% ee for the produced acetate at a conversion of 35% and an enantioselectivity of E=65 were achieved.

Competitive H-bonding in bicyclic bis-lactams: self-assembly in nanotubes or in unbalanced chiral threefold interpenetrated diamondoid network

Tetrahedron: Asymmetry 13 (2002) 2697

Remir G. Kostyanovsky,^{a,*} Konstantin A. Lyssenko,^b Denis A. Lenev^a and Irina A. Bronzova^a

^aN.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 ul. Kosygina, 119991 Moscow, Russia ^bA.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, 119991 Moscow, Russia

O-Protecting groups as long-range stereocontrolling elements in the addition of acetylides to 4-substituted quinolines

Tetrahedron: Asymmetry 13 (2002) 2703

Giuseppe Guanti,* Sara Perrozzi and Renata Riva*

Dipartimento di Chimica e Chimica Industriale, Via Dodecaneso 31, I-16146 Genova, Italy

The diastereoselective addition of acetylides to racemic 1 and optically active 2 quinolines in the presence of alkyl or aryl chloroformates to give 3,4 in good yield and moderate to good d.r. is reported. The diastereomeric ratio is influenced strongly by the *O*-protecting groups, which exert long range stereocontrol.

Synthesis of enantiomerically pure C_2 -symmetric acyclic and cyclic 1,2-diamines via pinacol coupling of imines

Tetrahedron: Asymmetry 13 (2002) 2727

Rita Annunziata, Maurizio Benaglia,* Marinella Caporale and Laura Raimondi*

Dipartimento di Chimica Organica e Industriale, Università di Milano via Golgi, 19-20133 Milano, Italy

The inter- and intramolecular coupling of imines promoted by SmI_2 and Lewis acids or by Zn/MsOH was studied. The intramolecular version allowed for an efficient, stereoselective synthesis of 1,2-diamines with C_2 symmetry.

On the enantioselective hydrogenation of isomeric β -acylamido β -alkylacrylates with chiral Rh(I) complexes—comparison of phosphine ligands and substrates

Tetrahedron: Asymmetry 13 (2002) 2735

Detlef Heller,^{a,*} Jens Holz,^a Igor Komarov,^a Hans-Joachim Drexler,^a Jingsong You,^a Karheinz Drauz^b and Armin Börner^{a,c,*}

^aInstitut für Organische Katalyseforschung an der Universität Rostock e.V., Buchbinderstr. 5/6, D-18055 Rostock, Germany ^bDegussa AG, Business Unit Fine Chemicals, Postfach 13 51, D-63403 Hanau, Germany ^cDepartment of Chemistry, University of Rostock, A.-Einstein-Str. 3a, D-18059 Rostock, Germany

P-P*: Me-DuPHOS, Et-DuPHOS, Me-BPE, Me₄-BASPHOS, DIOP, HO-DIOP etc.